Microwave-assisted hydrothermal synthesis, characterization and catalytic performance of Fe2(MoO4)3 in the selective oxidation of propene
نویسندگان
چکیده
A method for the simple and efficient microwave radiation-assisted hydrothermal synthesis of Fe2(MoO4)3 has been developed. Several factors such as pH, addition rate, molybdenum precursor, type solvent various other parameters are studied. The catalysts were characterized using X-ray diffraction, scanning electron microscopy, Mössbauer spectroscopy specific surface area measurements. results show that different morphologies can be obtained, depending on conditions under which iron molybdate is prepared. Nevertheless, in all cases solid particles appear to covered by an amorphous oxide layer, less rich than case a crystallized layer. presence this layer was revealed facets molybdate, with approximately same composition thickness. In effort evaluate relationship between morphology their catalytic properties, several samples exhibiting tested oxidation propene acrolein. These platelets larger (100) planes appeared more active. This attributed faster re-oxidation due preferential diffusion oxygen anions bulk structure channels perpendicular these planes.
منابع مشابه
extraction and characterization of allium irancum plant extract and its application in the green synthesis of silver nano particles and oxidation of thiocarbony1 compounds
سنتز سبز نانوذرات فلزی (nps) درسالهای اخیر توجه بسیارزیادی را به خود جلب کرده است. زیرا این پروتوکل کم هزینه وسازگار با محیط زیست از روش های استاندارد سنتز. در این پایان نامه ما گزارش میکنیم یک روش ساده و سازگار با محیط زیست برای سنتز نانوذرات نقره با استفاده از محلول آبی عصاره گیاه allium iranicum به عنوان یک عامل کاهش دهنده ی طبیعی. نانو ذرات نقره مشخص شد با استفاده از تکنیک های uv-visible، x...
Microwave–Assisted Hydrothermal Synthesis and Optical Characterization of SnO2 Nanoparticles
Semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that are not present in their bulk counterparts. In this work, extremely fine and pure SnO2 nanoparticles of ~1.1 nm size were synthesized by a solution process, in which amorphous precipitate of SnO2 was crystallized by microwave heating. The particles sizes varied from ~1.1 to ~2.7 nm. By XRD analy...
متن کاملcomparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.
heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...
15 صفحه اولmicrowave–assisted hydrothermal synthesis and optical characterization of sno2 nanoparticles
semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that arenot present in their bulk counterparts. in this work, extremely fine and pure sno2 nanoparticles of ~1.1nm size were synthesized by a solution process, in which amorphous precipitate of sno2 was crystallizedby microwave heating. the particles sizes varied from ~1.1 to ~2.7 nm. by xrd analysis...
متن کاملSynthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles
Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Catalysis Today
سال: 2021
ISSN: ['0920-5861', '1873-4308']
DOI: https://doi.org/10.1016/j.cattod.2019.05.021